Bioinformatics Experimentation in a New Agent-Based Infrastructure OpenKnowledge

(poster coming soon)

<u>Dietlind L. Gerloff</u>*, Xueping Quan, Adrian Perreau de Pinninck, Paolo Besana, Siu-wai Leung, Marco Schorlemmer, Dave Robertson

> *Dept of Biomolecular Engineering, UC Santa Cruz School of Informatics, University of Edinburgh Artificial Intelligence Research Institute, IIA-CSIC

Context of the Work

OpenKnowledge (EU FP6):

A Peer-to-Peer architecture emphasizing the sharing of knowledge via interaction models

- 3y Targeted Research Project in Computer Science
- 2006-8; currently smaller follow-on projects since
- Testbeds: Bioinformatics + Emergency Response

www.openk.org

OK kernel V1.1 (requires Java 1.5; JRE6)

- + more info, examples
- + demo of "omicslab" scenario

OpenKnowledge - Bioinformatics

Robertson* / Gerloff /	University of Edinburgh
Tate / Bundy	
Schorlemmer / Abían /	CSIC Barcelona
Sierra / Augusti	
van Hermelen	Vrije Universiteit Amsterdam
Dasmahaptra / Lewis	School of Eng & CS
Shadbolt / Berners Lee	Southampton
Motta	Open University
Giunchiglia / Marchese /	University of Trento
Bonifacio / Riccardi	

Interest in P2P

- sharing (without depositing)
- ease of joining ("subscribing") to a task group
- scalability
- no (or less) need for curation and maintenance

P2P in bioinformatics:

- Chinook
- SEED

Other related work: Workflow Platforms

- Kepler
- TAVERNA (myExperiment)

OK - Design Philosophy & Goals

- peer-to-peer as open as possible
- not (as) domain-oriented
- peers groups include non-expert users
 (expert / some knowledge / "dummy" users)
- emphasis on sharing knowledge/data of any kind (less on the distribution of computational load)
- supporting language:
 LCC (Lightweight Co-ordination Calculus):
 message passing (more details on poster)

Applied Bioinformatics/Biology at High Level: Consistency checking + Data sharing

An Interaction in OK in a Nutshell

- 1. Peer E (Experimenter) sets a task (asks a question)
- Discovery Service (DS) looks for peers of potential interest, and suggests interaction partners and <u>interaction models (IM)</u> (if available)
- 3. The IM specifies <u>roles</u> to be played, and peers subscribe (by agreeing) to interact + in which role(s)
- 4. One peer is (computational) coordinator
- 5. Roles are executed via OK-Components (OKC)

Notes:

- many possible IMs for carrying out the same task
- OK is at "infancy" stage! For example, DS in OK currently relies on information provided by peers

Experiment A - yeast protein structure models

Extend structural knowledge through modelling:
Find fragments of 3D-models of *S.cerevisiae* (yeast)
proteins that can be trusted

- 6604 yeast protein sequences (some predicted)
- currently only 330 known 3D-structures (in PDB)

Consensus-building is a popular strategy in Applied Structural Bioinformatics (typically via meta-WWW-servers)

- Compare modelled structures from three databases: SWISSMODEL (769 models); SAM (2211 models); ModBase (2546 models) in OpenKnowledge
- MaxSub program to identify common substructures

Results

Example: (MaxSub pair-wise common substructure in blue)

YBR024W: SWISS-SAM ModBase-SAM SWISS-ModBase

MScore: 0.660 0.459 0.400

CYSP = Comparison of Yeast 3D Structure Predictions

578 three-way supported MaxSub-substructures > 45 aa from 545 proteins

(Linked from www.openk.org)

Experiment C - de novo peptide sequencing

Look into one another's "trash"

Increase confidence in peptide assignments to MS/MS spectra in proteomics

- one (of several) uses of MS to study protein content
- especially difficult: non-model organisms; mixtures

Data sharing has become a bottleneck in modern biology

- Implement demo example guided by user input
- OK-emulation with 9 peers: 7 proteomics labs + self
 + NCBI database
- Test data: 38 peptides from ABRF 2006 (contest data; 35% of 78 labs identified >40 or 48 proteins in 2006)

Contact/input from an active community

Experiment C: de novo peptide sequencing

Results

Implementation notes:

- search is executed locally using BLAST (sequence) or OMSSA (spectrum)
- visualisation: OK-omics prospector
- database peer is important for revealing contaminants + holds promise for consistency checks with other data (species, annotation, etc)

3Labs and 1Database:

Successful integration of data sharing and consistency checking

We found increased correct identification rate compared to random chance, though not yet significant

Encouragement to run a larger sample

(Demo available at www.openk.org)

Conclusions & Future Work

- Three implementation examples served primarily to:
 - as proof of principle (can be done) & demos
 - to advance OK-development
 - to illustrate complementarity to other infrastructures
 - benefit from each other's experiences
- Particularly exciting:
 - data sharing example
 - work with data other than sequences (i.e. not strings)
- UCSC group's current/future interests:
 - spur on development and user-base through more integrated examples
 - investigate benefits of raw data sharing (J.Magasin)

