Analysing the microRNA-17-92/Myc/E2F/RB Compound Toggle Switch by Theorem Proving

Giampaolo Bella and Pietro Liò @ Catania and Cambridge

Under the auspices of British Council's grant Computer-assisted verification for safety properties of genetic networks underlying liver regeneration"

Motivation

Genetic networks stretch human intuition

 Big problem: miRNA target prediction
 How 'bout miRNA influence on network regulation

 Tools from

 Computational analysis (differential eqs, ...)

Computer-aided visualization (GNA, VisualGNA,...)

OFormal/symbolic approaches

Pen-and-paper (Petri nets, Pi-calculus,...)

Computer-aided (model checking)

Use theorem proving!

Model Checking vs Theorem Proving

Pros

- Press-button tool
- May validate properties quickly

Cons

- Only handles small systems
- State explosion

Pros

- Handles unboundedsize systems
- OVery expressive

Cons

- Needs human intervention
- Steep learning curve

PLOS COMPUTATION/

Predictive Modeling of Signaling Crosstalk during *C. elegans* Vulval Development

Jasmin Fisher^{1*}, Nir Piterman¹, Alex Hajnal², Thomas A. Henzinger^{1,3}

1 School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, 2 Institute of Zoology, University of Switzerland, 3 Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California, United States of America

BIOINFORMATICS

Model Checking Genetic Regulatory Networks with Parameter Uncertainty

Grégory Batt¹, Calin Belta¹, and Ron Weiss² ¹ Center for Information and Systems Engineering and Center for BioDynamics, Boston University, Brookline, MA, USA ² Department of Electrical Engineering and Department of Molecular Biology, Princeton University, Princeton, NJ, USA batt@bu.edu, cbelta@bu.edu, rweiss@princeton.edu

Temporal logic patterns for querying dynamic models of cellular interaction networks

Pedro T. Monteiro $^{1,2,3},$ Delphine Ropers 1, Radu Mateescu 1, Ana T. Freitas 2 and Hidde de Jong 1,*

Analysis of Genetic Regulatory Networks: A Model-Checking Approach

Grégory Batt^{1*}, Hidde de Jong¹, Johannes Geiselmann², and Michel Page^{1,3}

 Model Checking Genetic Regulatory Networks

 BIOINFORMATICS ORIGINAL PAPER
 Vol. 23 no. 18 2007 Pages 2415-2422
 using GNA and CADP

 Robustness analysis and tuning of synthetic gene networks
 égory Batt ¹,*, Boyan Yordanov ², Ron Weiss ³ and Calin Belta ¹
 égory Batt ¹,*, Boyan Yordanov ², Ron Weiss ³ and Calin Belta ¹

 ¹Centers for Information and Systems Engineering and for BioDynamics, Boston University, Boston, MA, USA, ²Department of Biomedical Engineering, Boston University, Boston, MA, USA,
 215-224 (2005)

 BIOINFORMATICS
 Holder Checking Genetic Regulatory Networks

A general computational method for robustness ana with applications to synthetic gene networks

Aurélien Rizk, Gregory Batt, François Fages and Sylvain Soliman INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France Received on January 7, 2009 215

Toward Integration of Systems Biology Formalism: The Gene Regulatory Networks Case

> Raffaella Gentilini gentilin@dimi.uniud.it Università di Udine (DIMI), Via Le Scienze 206, 33100 Udine, Italy

The trail we've walked so far

- Analogies computer/genetic networks
- General model for gene/protein networks
- Formal analysis of the genetic toggle
- Extensions with miRNAs
- Towards analysis of compound toggle featuring miRNA-17-92

The main theorem

The complete guarantees

- "Bistability: the toggle may only reach two stable states s.t. either protein prevails"
 - 1. BistabilityA: protein A may exceed its second threshold while B doesn't exceed its own
 - 2. BistabilityB: protein B may exceed its second threshold while A doesn't exceed its own
 - 3. NonInstability: both proteins may not exceed their respective second thresholds at the same time

The microRNA-17-92/Myc/E2F/RB compund toggle switch

The tool: Isabelle

- Generic, interactive, user-driven proof-assist
- May use HOL as meta-language
- Its simplifier does conditional term rewriting
- Its automatic provers do classical reasoning
- Proof attempts may fail due to either insufficient skill or sound counterexamples

General model: basics

typedecl gene
typedecl protein
typedecl mirna

datatype event = Produces gene protein | Triggers protein gene | Inhibits protein gene | Degrades protein | Expresses gene mirna | Silences mirna gene

General model : initial polymerase

\mathbf{consts}

initialpolymerase :: int

axioms
initialpolymerase_value [iff]:
 initialpolymerase > 0

General model : induced polymerase

\mathbf{consts}

inducedpolymerase :: gene \Rightarrow event list \Rightarrow int

primrec

General model : current polymerase

$\mathbf{constdefs}$

 $currentpolymerase :: gene \Rightarrow event list \Rightarrow int$ currentpolymerase x nt ==initialpolymerase + inducedpolymerase x nt

General model : protein concentration

Verifying the general model

lemma inducedpolymerase_Produces: inducedpolymerase x (Produces x Y # nt) = inducedpolymerase x nt apply simp done

Verifying the general model

lemma inducedpolymerase_Produces: inducedpolymerase x (Produces x Y # nt) = inducedpolymerase x nt apply simp done

lemma currentpolymerase_Triggers: currentpolymerase x (Triggers Y y # nt) = (if x=y then currentpolymerase x nt + 1 else currentpolymerase x nt) apply (simp add: currentpolymerase_def) done

Verifying the general model

lemma inducedpolymerase_Produces: inducedpolymerase x (Produces x Y # nt) = inducedpolymerase x nt apply simp done

lemma currentpolymerase_Triggers: currentpolymerase x (Triggers Y y # nt) = (if x=y then currentpolymerase x nt + 1 else currentpolymerase x nt) apply (simp add: currentpolymerase_def) done

lemma concentration_Degrades: concentration X (Degrades Y # nt) = (if X=Y then concentration X nt - 1 else concentration X nt) apply simp done

Modelling the genetic toggle

- Model is set of all possible evolutions
- Each evolution is a list
- Model defined by structural induction

Modelling the genetic toggle

- Model is set of all possible evolutions
- Each evolution is a list
- Model defined by structural induction
- Qualitative model amenable to TP
 Birth and death factors abstracted away
 Inductive model subsumes stochastic one

A model toggle: base and production

inductive_set comptoggle :: event list set where

- base: [] \in comptoggle
- / e2fpr: [ne2 \in comptoggle; currentpolymerase e2f ne2 > 0]] \implies Produces e2f E2F # ne2 \in comptoggle

miRNA is expressed and silences...

/ micrex: [ne4 \in comptoggle; currentpolymerase microRNA1792 ne4 > 0]] \implies Expresses microRNA1792 miR1792 # ne4 \in comptoggle

/ miRsi: [ne11 \in comptoggle; Expresses microRNA1792 miR1792 \in set ne11] \implies Silences miR1792 e2f # ne11 \in comptoggle

Myc regulates and degrades...

/ Myctr1: [ne5 \in comptoggle; concentration Myc ne5 \geq threshold 1 Myc]] \implies Degrades Myc # Triggers Myc microRNA1792 # ne5 \in comptoggle

Conclusions and developments

- TP opens up genetic networks to logicians
- Tool support scales up linearly to larger networks
- Toggle switch analysed, now completing holistic analysis of compound toggle
- More and more flavours of TP expected!