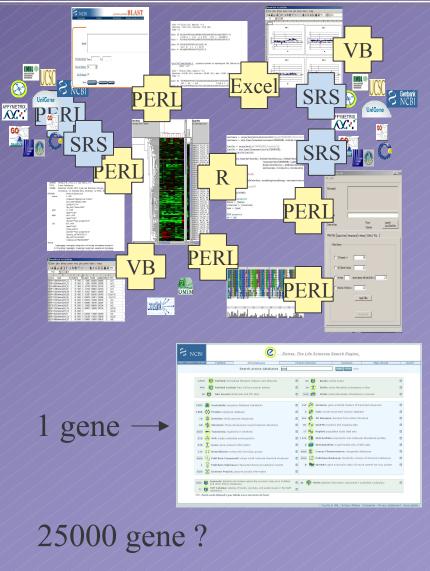


Easy and user-friendly workflow management based on the datamorphing concept

Stéphane GRAZIANI ISoft www.isoft.fr/bio

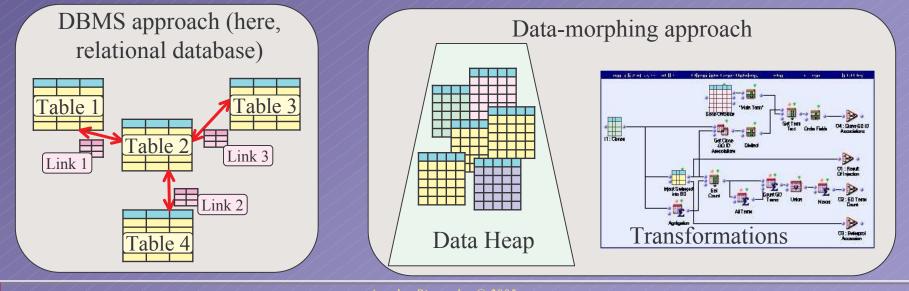

Amadéa Bio pack – © 2005

Integration in Biology


Data-morphing: an innovative approach for:

- Data integration
 - Very large volume
 - Heterogeneous data (Nature, format, access)
 - Concepts in constant evolution
- Tools integration
 - Heterogeneous formats
 - Different languages and environments
- Experimental methodology
 - From lab bench to web
- Evolutivity Reactivity
 - New data
 - New analyses

Amadéa Bio pack – © 2005


Underlying concepts Fusion of Workflow and Dataflow

• Data-heap:

- Principle = <u>No a-priori structure</u> of the data
- Data is stored unstructured, reduced to the smallest atoms of information
- Data semantics is given by the way it is used

Data-morphing

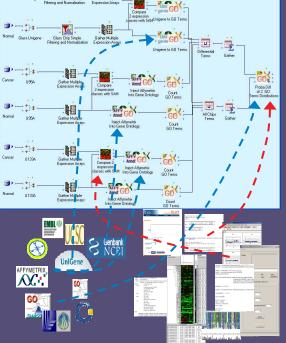
- Data-driven chaining of single transformation steps
- Very efficient data transformation engine (<u>1 million records per second</u>)
- <u>No limit</u> in the volume of treated data
- <u>No programmation</u>
- No need of a pre-existing data structure

Amadéa Bio pack – © 2005

Easy pipeline definition

A "biologist" speaking tool

- Definition of pipelines in an <u>homogeneous</u> environment
 - Focus on biological issues
 - Real-time ·
 - Gain in:
 - Quality
 - Productivity
 - Methodology
 - Execution time
 - Dramatically shorten experimentation cycles

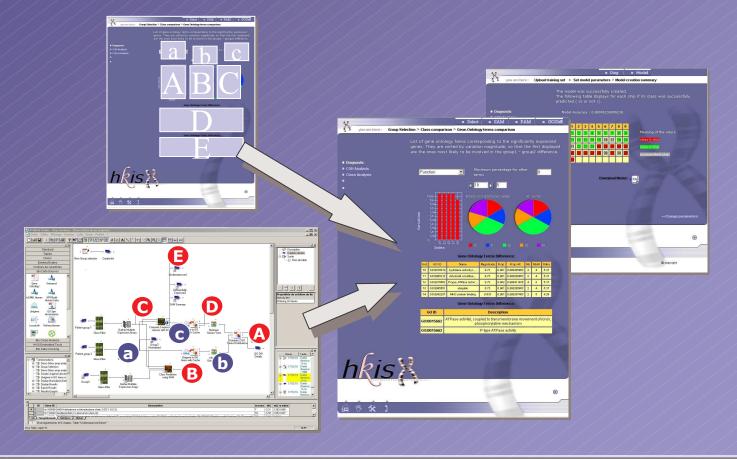

Features:

- <u>Instantaneous</u> connexion to any biological data sources
- <u>Intelligent linking</u> of any data source to any other
- Important panels of biological data analysis tools
- Library mechanism for easy non-programmatic extension

Real-time

-Access to data -Data linking -Data analysis -Parameter tests -Hypotheses tests

Data-morphing provides the <u>right data</u> at the <u>right place</u> at the <u>right moment</u>



Amadéa Bio pack – © 2005

Web interfaces

- Immediate publication of applications through the web
 - Interactive graphical interfaces for the end user

Amadea Bio pack – © 2003

- Quick overview of the platform
- How to develop an analysis pipe-line
 - Example : Starting from raw DNA chips data, normalize these data, and compare two classes of samples. From the differentially expressed genes, obtain:
 - A table showing per gene, with which disease it can be linked
 - The list of differentially distributed metabolic functions and the associated bibliography.
 - Steps:
 - Connexion to chips data
 - Normalization and construction of a summary table
 - Link to Refseq to obtain Gene information, including link to OMIM diseases
 - Link to OMIM to get disease title, and creation of a crossed table
 - Class comparison using SAM -> List of differentially expressed genes
 - Injection into the Gene Ontology Graph
 - Comparison with functions in the whole chip to get differentially distributed functions

4madea